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Abstract. The FLUXNET dataset contains eddy covariance measurements from across the globe, and represents an invaluable

estimate of the fluxes of energy, water and carbon between the land surface and the atmosphere. While there is an expectation

that the broad range of site characteristics in FLUXNET result in a diversity of flux behaviour, there has been little exploration

of how predictable site behaviour is across the network. Aside from intrinsic interest in this fundamental question, under-

standing site predictability would be useful for land surface model (LSM) evaluation in setting a priori expectations of model5

performance. It would also provide a clear rationale for selecting particular FLUXNET sites for model development, evaluation

and benchmarking. Here, 155 datasets with 30 minute temporal resolution from the Tier 1 of FLUXNET2015 were analysed

in a first attempt to assess individual site predictability. Predictability was defined using the disparity between the ability to

simulate fluxes at a site given specific knowledge of the site, and the ability to simulate fluxes given general land surface spec-

ifications. We then examined predictability using performance metrics including RMSE, correlation, and probability density10

overlap, and defined site uniqueness as the disparity between multiple empirical models trained globally and locally for each

site. A number of hypotheses potentially explaining site predictability were then tested, including climatology, data quality and

site characteristics. We found very few clear predictors of uniqueness across different sites including little evidence that flux

behaviour is well discretised by vegetation types. While this result might relate to our definition of uniqueness, we argue that

our approach is sound and provides a useful basis for site selection in LSM evaluation.15

1 Introduction

The land surface is a key component of the climate system, as it provides feedbacks to atmospheric conditions via the exchange

of heat, moisture, and carbon fluxes. These surface-atmosphere exchanges are contingent on the characteristics of the soil

and vegetation. However, these interactions between the atmosphere and land are not uniform, for example in hot, mesic

environments net primary productivity (vegetation productivity) becomes less sensitive to the effect of climate (Bonan, 2015;20

e.g. increasing precipitation Chapin III et al., 2011; Del Grosso et al., 2008; Gillman et al., 2015; Huston and Wolverton,

2009; Schuur, 2003). Across the globe, variability in the productivity-climate relationship suggests that the behaviour of some

ecosystems must be more predictable than others. Intuitively, the behaviour of ecosystems that experience marked stochasticity

in precipitation (e.g. ecosystems that rely on monsoonal rains for growth), would likely be harder to predict than ecosystems that

experience relatively consistent year-to-year conditions (e.g., the boreal zone, the wet tropics or desert regions). Furthermore,25

whilst vegetation patterns are broadly understood at global scales (e.g. the Köppen climate classification Kottek et al., 2006;
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and Whittaker’s biome classification, Whittaker, 1962), at local and regional scales, plants exhibit local scale adaptations to

their environment (e.g. soils and topography). Taken together, these relationships between climate and local factors point to

a spectrum of site predictability. Perhaps surprisingly, the predictability of a site is rarely considered when choosing sites to

evaluate models.

Within the climate science community, 30-years of research originating from Dickinson et al. (1986) has transformed how5

land surface models (LSMs) describe the exchange of energy, water and, more recently, carbon. The community has moved

from no explicit representation of vegetation in climate models (e.g. Manabe, 1969), through highly empirical second genera-

tion models (which included an explicit simulation of heat and moisture fluxes and storage in soil and vegetation), to models

that attempt to explicitly represent the soil-vegetation continuum (see review by Pitman, 2003). Common to virtually all LSMs

is an assumption that flux behaviour variations between biomes, given similar driving conditions, can be explained by a small10

sample of structural and physiological parameters, grouped as plant functional types (PFTs). As a result, land modellers have

sought observations from locations characteristic of these broad PFTs to develop and evaluate models.

Land surface modellers often use FLUXNET data to evaluate their models, and to tease out weaknesses, with the goal

of model improvement. In the 1990s and 2000s, when only a handful of flux tower site measurements were available, the

LSM community gravitated to these, hence observations taken at Cabauw (The Netherlands), Harvard Forest (USA), and near15

Manaus (Brazil) were widely used. Over the last two decades, direct measurement of land surface fluxes and meteorological

variables has rapidly expanded, as new flux towers are installed and existing towers continue to gather data. FLUXNET 2015

(Fluxdata.org, 2018), as a synthesis of these measurements, represents a rich source of information about the exchange of

carbon, water and energy. The freely available release (Tier 1), encompasses over 150 sites and includes over 500 site-years of

high temporal, quality-controlled data. These data provide an unparalleled opportunity to improve our observationally-based20

understanding of land-atmosphere exchanges of carbon, water and energy. They are also particularly useful for LSM evaluation

since both the necessary driving variables (meteorological variables) and prediction variables (energy, water and carbon fluxes)

are reported at a spatio-temporal scale relevant to LSMs. As a consequence, land surface modellers have developed tools to

enable the FLUXNET 2015 data to be used routinely (e.g. Ukkola et al., 2017). However, with hundreds of site datasets now

freely available, site choice for model evaluation varies widely among the land surface community, with no common strategies25

for site selection. FLUXNET sites differ in many ways: in data record length (from less than one to greater than twenty years);

in climate regime; and in soil and vegetation characteristics. Their similarity to each other also varies – FLUXNET is not evenly

distributed over the globe, and has higher density in more densely populated and wealthy regions, such as Western Europe, and

the north-east of the United States, with particularly heavy representation of temperate forests.

Despite obvious distinctions between sites in FLUXNET defined by precipitation regime, temperature, seasonal snow cover30

and indeed PFT type, it is not immediately clear which of the 150-plus freely available sites are most useful for model evalua-

tion. One might assume that given the diversity of sites, some are easier to simulate than others, and it seems sensible to assume

that the choice of sites could have an impact on insight gained from model evaluation at these sites. However, assumptions

about the predictability of different sites have not been explicitly tested. For example, in recent multi-model evaluation and

benchmarking experiments, where multiple FLUXNET sites were used, Best et al. (2015), Haughton et al. (2016) and Haughton35
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et al. (2018) were not able to identify any obvious patterns in model performance across sites. The lack of quantification of

predictability means that site selection for evaluation is potentially susceptible to confirmation bias. That is, a modeller might

unconsciously choose sites that are easier for their model to simulate, rather than selecting sites based on their instructiveness

for identifying flaws in a model. For example, consider the implications of evaluating a model against ten FLUXNET sites

that happen to be the least predictable in comparison to evaluation against the ten most predictable sites. In the former case,5

a modeller might become disillusioned with the apparent lack of skill of a potentially good model, while in the latter case a

modeller might become overconfident concerning the skill of a poor model.

This issue of site predictability has been ignored in historical flux-model comparisons, where modelling groups have gener-

ally not tried to justify their choice of sites, or based their reasoning around issues such as data availability or length of record.

Chen et al. (1997) chose the Cabauw site for a multi model intercomparison because it was considered relatively easy to sim-10

ulate. Several authors chose longer (multi-year) sites (Balsamo et al., 2009; Lawrence et al., 2011; Wang et al., 2011). Some

evaluation papers explicitly sought to sample a range of PFTs (Bonan et al., 2014; De Kauwe et al., 2015). Many highlighted

choices based on the availability of gap-filled data (Krinner et al., 2005; Slevin et al., 2015; Wang et al., 2011). A few papers

highlighted the high natural variability of a site (Balsamo et al., 2009), or a high degree of climate differences between sites

(Wang et al., 2011). Others highlighted the quality of specific sites and some provided evidence for this decision based on en-15

ergy closure (Napoly et al., 2017). In contrast to the often detailed explanation for why a specific model or parameterisation is

chosen, the defence of specific evaluation data sets often lacks a coherent rationale. Most commonly, “high quality” or “longer”

data sets are selected. A longer data set may sample more years, but a single month of data from another site might provide

more information regarding a specific phenomenon (e.g. the response to a drought or a heatwave). Sampling more PFTs might

be valuable, but might also bias results if the selected sites fall within a similar behavioural regime not well discretised by PFT.20

In short, it would be useful to be able to make clear, evidence-based statements about the relative predictability of different

sites, based on meteorological patterns or local site characteristics. This would allow modellers to make informed site selection

choices for model development/evaluation that maximise coverage of diverse site behaviours, and ultimately help to reduce

uncertainty in model projections.

There is no single definition of predictability, but it can broadly be defined as the ability to reproduce a property of a system,25

given only knowledge of variables that are causally related to that property. Predictability of a system should therefore also

encompass the capacity to predict changes in the property of interest, given changes in the drivers of the system, for example

differing flux responses in wet and dry periods. In this context we might envisage predictability to be the degree to which a

“perfect” model could accurately estimate measured fluxes at a site, given appropriate meteorological variables and relevant

site characteristic information. Of course, we lack a perfect model, and the accuracy of our observational data is always limited30

by measurement error, and noise in the system being measured. As such, any practical measure of predictability will be limited

in accuracy, but this does not mean that it cannot still be useful.

Some predictability metrics do exist: Colwell (1974) defines a predictability metric based on constancy in time and contin-

gency on season but this metric only captures one aspect of performance – temporal correlation. Abbas and Arif (2006) also

proposed a number of time series predictability metrics, but these are only useful in univariate time-series prediction, where the35
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forecast is made only given knowledge about the predicted variable itself, rather than knowledge of other predictor variables,

as is the case with flux prediction from meteorological variables. There are also model-class specific performance metrics, such

as the Genetic Programming predictability metric presented in Kaboudan (2000), but such metrics rely on the assumption that

the model is suitable for predicting the data in question.

Since existing predictability metrics are not suitable to our problem, below we detail a new metric of site predictability and5

analyse the FLUXNET 2015 sites according to their predictability. To do this, we applied a suite of empirical models to predict

fluxes at the 155 flux tower sites with half-hourly data included in the Tier 1 FLUXNET 2015 release. We also investigate

several hypotheses that might explain the variation in site predictability in different locations. Finally we attempt to provide a

sound theoretical basis for site selection for LSM development and model intercomparison projects. This will allow a priori

expectations of model performance to be better defined, as well as mitigate the potential for ad-hoc site selection to shape10

judgement of how well LSMs perform.

2 Methods

Differences in predictability between sites might be due to many factors, including, but not limited to:

– variability of meteorology (e.g. strong seasonality in precipitation compared with low variability, large seasonal cycles

in incoming radiation compared to small seasonal cycles, and stochastic events);15

– complexity or consistency of the site itself (e.g. orographic effects, managed land use including different irrigation and

cropping patterns, vegetation and soil structures);

– broader scale impacts (e.g. climate type, regional aridity, teleconnections to major oceanic drivers, landscape hetero-

geneity, geological basins);

– technically sourced variance (quality of instrumentation, assumptions and application of eddy covariance methodology,20

post-processing).

We focus on the first of these and ask whether predictability at a specific site can be understood in terms of the differences in

flux behaviour given particular site and meteorological conditions, relative to the flux behaviour that would be expected at other

sites given the same conditions. We do this by training a suite of empirical models (based on the models described in Haughton

et al., 2018) to predict fluxes, based on meteorology, at each FLUXNET site twice. First we train the empirical models using25

all of the available data from all of the available sites at once (“global training”), to characterise the general expected flux

behaviour given a specific set of meteorological conditions. Then we re-train the models using only data from the individual

site in question (“local training”). The globally and locally trained versions of the models are then used to make predictions

at each FLUXNET site, and their performances are compared, using a range of performance metrics. Any improvement in

performance by the locally trained model over the globally trained model is an indication of driver-flux relationships that30

are unique to the site in question (note that this may include systematic errors in measurement). Since such a site exhibits
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relationships between drivers and fluxes that are not broadly shown at other sites, we argue this site has lower predictability

than a site that acts more similarly to the global behaviour.

To quantify this, we plot the local and global metric values as Cartesian coordinates, then convert them to polar coordinates

(see Figure 1). The origin represents the best possible performance metric value, so distance to the origin represents the mean

site performance across the global and local simulations. The degree to which each point drops below the 1:1 line will be5

our definition of uniqueness, or lack of predictability. To illustrate, imagine a model that perfectly represented all relevant

process and fully utilised all of the available information in the input data to make the best possible prediction. This model

could be used to assess site predictability based on the residual sum of squares against observations, and this metric value

could be compared across different sites. No such model exists of course, and we therefore use empirical models to assess the

predictability of the data while minimising assumptions about the functional form of any relationships between variables. For10

further discussion of why empirical models are suitable for estimating the information available in FLUXNET data, see Best

et al. (2015) and Haughton et al. (2016).

In particular, we have used models in the framework developed in Best et al. (2015) and Haughton et al. (2018), to predict net

ecosystem exchange (NEE), sensible heat (Qh), and latent heat (Qle). These models included some simple linear regressions,

as well as cluster-plus-regression models (K-means clustering over meteorological driving data, and then an independent linear15

regression between drivers and fluxes at each cluster). Models used various combinations of meteorological driving variables:

down-welling shortwave radiation (S), surface air temperature (T), relative humidity (H), wind speed (W), and precipitation (P).

Models also used a number of derived variables, including difference in air temperature and specific humidity since dawn (dT

and dQ, respectively), as well as lagged averages of each meteorological forcing (e.g. lH10d indicates a 10-day lagged average

of H), where the lags were chosen pseudo-optimally. Haughton et al. (2018) showed that each of these driving variables we20

use here added predictive power to the models, and had relatively low correlation, avoiding problems of collinearity. Models

referenced below follow a standard naming scheme that indicates the structure of the model, for example, S_lin indicates a

linear regression using only shortwave down, while STHdT_lS30d_km243 would indicate a cluster-plus-regression model with

243 clusters, with shortwave down, air temperature, relative humidity, temperature difference since dawn, and a 30-day lagged

average of shortwave down as inputs. None of the models are provided with site characteristic data (e.g. geographic, soil, or25

vegetation information) as we want to use the models to test the effects of these characteristics on predictability. A complete

list of the empirical models is shown in Table 1.

To run the models, we converted the raw FLUXNET 2015 Tier 1 data (only sites with half-hourly data, 155 in total), using

the FluxnetLSM tool developed by Ukkola et al. (2017). In all cases, the empirical models are trained only on high-quality

non-gap-filled data, according to Quality Control (QC) flags from FLUXNET 2015 and FluxnetLSM. The models are then run30

on all available data (including gap-filled data, to maximise the time coverage of empirical models with time-lagged drivers),

and evaluated only on time steps with non-gap-filled data. We then plotted each metric value for each site in a scatter plot, with

the global value on the x-axis, and the local value on the y-axis. We decomposed that information into:
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Successful simulations Negative uniqueness

model name global NEE Qh Qle rmse corr overlap

S_lin 155 155 155 155 2 206 120

ST_lin 155 155 155 155 1 20 117

STH_km27 152 152 152 152 3 4 50

STH_km81 152 146 150 149 3 4 39

STH_km243 152 108 133 131 3 3 25

STHW_km81 152 142 148 147 2 3 23

STHW_km243 152 88 126 123 2 2 11

short_term243 152 65 98 97 1 1 9

long_term243 152 3 12 12 2 2 0

long_term729 152 0 0 0 0 0 0
Table 1. number of sites that models ran successfully at, for global training (columns 1), the number successful local simulations for each

variable (columns 2-4), and the number of cases of negative uniqueness, indicating that the local model performed worse than the global

model, for each of the three metrics (columns 5-7). Three sites (CA-Man, DE-RuR, and DE-RuS) did not include relative humidity, and so

all models including that variable failed, including the global model.

1. Mean performance: the mean metric value over the local and global simulation at each site, defined by distance from

the origin. Higher is worse in most metrics, including root mean square error (RMSE), but lower is worse in the case of

Pearson’s correlation coefficient (Corr) and Perkins’ distribution overlap metric (Overlap, Perkins et al., 2007).

2. “Uniqueness”: the angle below the 1:1 line. Uniqueness is calculated as 4
πarctan(x−yx+y ), such that if, for example, RMSE

is 0 locally and some positive value globally, uniqueness will be 1.5

Note that because the best possible result for some metrics is 1 (e.g. Corr and Overlap), in those cases we subtract the value

from 1 such that the best result is 0 before calculating the uniqueness, so that it can be interpreted the same way across metrics

- that positive numbers indicate better local performance. We avoid transforming metrics for mean performance, so that metrics

are in their standard units.

In general, this definition of uniqueness ranges from -2 to 2, and is strictly between -1 and 1 for metrics that only have values10

on one side of “best” (e.g. RMSE is positive definite, Corr is always less than or equal to 1), but in most cases should lie between

0 and 1. A model’s uniqueness is 0 if the local and global simulations perform equally well, between 0 and 1 if the local model

performs better than the global model, and negative if the local model performs worse that the global. Negative values are

unusual, and indicate that the local meteorological forcing provides insufficient useful information to increase performance,

and that the local model has failed in a spurious way (discussed in more detail below). The number of negative uniqueness15

values for each metric and each model is shown in the last three columns of Table 1, out of a maximum of 10 x 155 = 1550

cases.
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The uniqueness and mean performance metrics are shown for RMSE in Figure 1 for the S_lin empirical model to illustrate

how to interpret later figures: uniqueness is the angle measured clockwise from the origin (the optimal metric value) and

the 1:1 line (equal local and global performance), and mean performance is the average performance of the local and global

simulations, given by the distance of each point from the origin. Each point is a different site. Figure 1 also illustrates the

differences in a simple case between the results when the local training data is identical to the testing data, and when it differs5

due to mismatch between the meteorological and flux QC flags between training and testing. Both rows of figures show local

versus global values, but the first row uses only flux variable QC flags for evaluation, and so can include part of the period

for which there are poor QC meteorology values. The second row uses exactly the same QC flags (and so time steps) in both

training and testing phases (as a proof of concept). As a result, in the second row, the points are strictly at or below the 1:1 line.

In the first row, the points shift slightly, and some lie very slightly above the 1:1 line. This difference can be exacerbated for10

more complex models.

Best et al. (2015) used the concept of ranking over multiple performance metrics, and then aggregating over rankings to

arrive at a single value that represented a broad concept of performance for each model. This methodology is extremely useful

for model evaluation using FLUXNET site datasets. However, due to the very different distributions of results for the different

metrics (discussed below), we avoided aggregating over metrics and instead examined a set of key metrics separately for their15

ability to capture independent aspects of performance. The metrics we chose were RMSE, as it provides an overview of model

accuracy in relevant units, Pearson correlation (Corr) as a measure of temporal correlation, and Perkins’ distribution overlap

metric (Overlap), as it gives a measure of the match between the observed and modelled distributions.

2.1 Caveats

In an idealised experiment, even if we exclude the possibility of over-fitting, the locally-trained model should always perform20

better than the globally trained model to some degree. This is because the local model is predicting the same data that it is

trained on, and should capture any behaviour that is site-specific (that is, it is being tested in-sample). However, there are a

number of factors that might prevent this from happening.

First, a model may require a substantial amount of data to avoid over-fitting, and some sites may not provide enough data

to train the model locally. For example, very few sites had enough data to adequately train the long_term243 or long_term72925

models from Haughton et al. (2018), each of which have 10 input variables (S, T, H, W, dT, dQ, lS30d, lP30d, lH10d, lT6hM)

and hundreds of clusters. As such, these models would potentially require hundreds of non-gap-filled data samples at each

cluster to obtain a reliable linear regression estimate (so ~104 samples in total). These more complex models often fail to run

locally, or run successfully but produce erroneous results (e.g. due to too few samples to obtain reliable regression results for

a K-means cluster - this problem is described in detail in the Supplementary Material in Haughton et al., 2018). To mitigate30

this problem, we modified the models from Haughton et al. (2018) to ensure that each cluster always contained a number of

samples at least 5 times greater than the number of input variables. When clustering failed, it was re-attempted a further 9

times, and if that was not successful, the model was excluded. See Table 1 for details on how many models ran successfully

for each variable.
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Figure 1. RMSE values for the global (x-axis) and local (y-axis) model simulations. Columns show the three fluxes. The top row uses S

and the flux QC flags for training, and only the flux QC flags for evaluation (the method used throughout the paper). In the second row, the

meteorological QC flags are also used for evaluation, such that the training and testing data are identical. Colours simply serve to identify

sites, and allow clearer comparison between the top and bottom rows, and the blue line is a 1:1 line.

Second, as noted above, the training and testing data for the local model are in practice nearly always different, because the

QC flags for the flux variables being evaluated against do not correspond perfectly with the meteorological forcing variable

QC flags. Models are trained only on data that has good meteorological and flux QC flags for all relevant variables. However,

simulations are evaluated on a larger subset of all data – those time steps marked as good QC for the flux variable alone. The

motivation for doing this is to ensures that all of the different empirical models are evaluated on the same number of time steps.5

So, for instance, with the S_lin model predicting Qle at a particular site, the number of time steps with good S and good Qle

QC flags might be only 80% of the time steps with good Qle QC flags only. Consequently, the model will be trained only on

the 80% of period that it is tested on. This problem is exacerbated for models with more inputs and for models with lagged

average inputs, which will usually be trained on substantially smaller subsets of data than they are evaluated on.
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Lastly, “performance” is dependent on metric, and so performance will only be strictly better locally for metrics that are

optimised by the regression-based structure used in the empirical models. For instance, ordinary least squares linear regression

optimises RMSE in the training dataset, so assuming the training and evaluation datasets are identical, then the RMSE of the

local model will be strictly not worse than the RMSE of the global model. However, metrics which assess model performance

in terms of distribution, such as the distribution overlap metric or temporal correlation, may occasionally show that the local5

model performs worse than the global model, even when the local model is clearly better under RMSE. This is particularly

pertinent in the context of a generally useful predictability metric.

These caveats are worth keeping in mind, but in the majority of the results below, they do not play a particularly large role.

We are confident that our predictability metrics are satisfactory for a first attempt to estimate site predictability.

2.2 Hypothesis testing10

Once we have a predictability metric, we can generate a number of hypotheses about what might determine predictability at

different sites. Below we list several hypotheses, many of which intersect, and so in some of these cases we also mapped some

predictability metrics against two hypothetical predictability sources.

Mean annual temperature and precipitation Sites with higher mean temperature tend to be those closer to the equator, and

tend to have a smaller annual temperature cycle range. All other things being equal, we might therefore expect warmer sites to15

be more consistent over time, have a more constant response to meteorological forcing, and therefore be more predictable. Sites

with higher average precipitation would be expected to have fewer drier periods, more consistently available soil moisture, and

higher humidity resulting in a damped daily temperature cycle, and are therefore likely to be more predictable.

For these hypotheses, the FLUXNET site data is not always adequate, as the mean may not be perfectly representative of

the true climatology of the site. For example, if the site only has a short dataset measured over a particularly wet or dry period,20

or if a site has a strong seasonal pattern in the quality of the temperature data, this would introduce a bias. For this reason, we

calculated mean annual temperature and precipitation from the half-degree CRU TS4.01 data (Harris and Jones, 2017), using

data from 1961-2016, and using the nearest neighbouring grid cell.

Aridity Arid sites tend to have higher precipitation variability, with fewer, heavier rain events, and longer dry periods (Donat

et al., 2016). We would expect that flux predictability would be lower at arid sites. For this hypothesis, we used an aridity index25

based on mean annual precipitation from CRU TS4.01, and the energy-only estimate for potential evapotranspiration (PET)

from Milly and Dunne (2016), based on net radiation and ground heat flux (PET = 0.8(Rnet−Qg)) from FLUXNET, such that

the aridity index (AI) = mean precipitation/PET. We assumed Qg=0 where sites did not provide Qg (which is approximately

true on long time scales).

Budyko curve deviations The Budyko curve (Gerrits et al., 2009) plots an evaporative index against a dryness index, with30

the expectation that sites should, in the long term, fall along a function of dryness that is both energy and water limited. Sites

that fall further from the Budyko curve may indicate data errors, or hydrological uniqueness (for example, rapid drainage, or

external water sources), or that the data in question is not long enough to adequately capture and account for long-term internal
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variability. Whatever the cause of divergence from the Budyko expectation, we would expect that more divergent sites would

be more difficult to predict.

Interannual variability Sites heavily influenced by longer term climate patterns, such as decadal scale ocean oscillations,

are less likely to have all of their relevant patterns captured within the period of FLUXNET measurement, and so potentially

contain systematic biases. We compared the interannual variability between sites for both T and P, using the CRU TS4.01 data.5

We calculated the coefficient of variance (CoV) for annual means of temperature (K), and precipitation (mm/year). We would

expect that as IAV increases (shown by greater CoV), predictability would decline.

Diurnal ranges Sites with large diurnal ranges have stronger rates of change between daily peaks and troughs, and these

are likely to make prediction harder. Faster changes in temperature, for example, can cause rapid changes in relative humidity,

which is a major driver of latent heat flux. We used the BioClim (WorldClim, 2016) mean diurnal temperature range using the10

nearest neighbouring grid cell for each site.

Seasonality Larger differences between winter and summer conditions would likely lead to lower predictability, since we

would expect flux behaviour at such sites to be more diverse over the course of the year. This would also affect the relative

influence of time varying factors, e.g. timing of snow melt, or vegetation phenology. For model and site combinations where

the training and testing data is more disjointed, this might also lead to lower predictability due to the non-training testing15

data diverging more in behaviour. Since about 55% of sites in Tier 1 are less than 5 years long, we used the BioClim variables

(WorldClim, 2016) to compare seasonality between sites. We investigated: isothermality - the ratio of diurnal temperature range

to annual temperature range; temperature seasonality - the standard deviation of monthly average temperatures, normalised by

the annual average in K; temperature annual range; precipitation seasonality; precipitation of wettest quarter; and precipitation

of the driest quarter.20

Vegetation type The FLUXNET 2015 sites are categorised by International Geosphere-Biosphere Programme (IGBP) veg-

etation types. There is a widely held assumption that different vegetation types behave differently in response to similar me-

teorological forcings (although this was assumption was questioned by Alton, 2011), and this presumably also applies to the

overall predictability of a site. We grouped IGBP vegetation types into 5 major groups:

– Evergreen Forest: Evergreen Broadleaf Forests, Evergreen Needleleaf Forests (49 sites).25

– Deciduous Forest: Deciduous Broadleaf Forests, Deciduous Needleleaf Forests (16 sites).

– Mixed Forest: Mixed Forests (7 sites).

– Crop: Cropland/Natural Vegetation Mosaics, Croplands (15 sites).

– Grass: Grasslands (29 sites).

– Shrubland: Barren or Sparsely Vegetated, Closed Shrublands, Open Shrublands (11 sites)30

– Savanna: Savannas, and Woody Savannas (13 sites).

– Wetland: Permanent Wetlands (15 sites).
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Other IGBP vegetation types not represented in FLUXNET 2015 Tier 1 included Snow and Ice, Unclassified, Urban and

Built-Up Lands, and Water Bodies. We then compared the performance metrics across these groups.

Geographic remoteness We are training the global models on all available sites, but FLUXNET sites are not evenly dis-

tributed over the land area of the globe. As such, we might expect that sites that have many other similar sites in the global

dataset would have their behaviours more adequately captured by a globally trained model. To investigate whether more geo-5

graphically unique sites were less predictable, we mapped the sites by uniqueness, and also compared uniqueness by average

distance to all other sites.

Energy balance closure Wilson et al. (2002) showed that FLUXNET sites often have a problem closing their energy

balance. Net incoming radiation (Rnet) does not match the total energy accounted for by the heat fluxes (Qh, Qle, and Qg) and

changes in heat storage, on average having an imbalance of around -20% at each site, but ranging from -60% to +20%. Since10

this imbalance pertains to boundary conditions, which are all measured (sometimes with the exception of Qg, although that can

be assumed to be too small to account for the difference on a long enough time scale), the imbalance indicates some problem

with either the measurement system, or the eddy covariance methodology. We would assume that sites with worse energy

imbalances are likely to be more difficult to predict. We calculated the energy closure gap as the energy_gap = mean(Rnet

- Qh - Qle - Qg) (we used Qg=0 for sites missing Qg), and also compared sites by normalised energy gap, using abs(1 -15

energy_gap/Rnet). Note that this is not the exact formulation used by Wilson et al. (2002), but it serves the same purpose – to

identify energy closure imbalances.

Record length Since many of the longer-term or rarer behaviours mentioned above are more likely to be captured adequately

in site datasets that span longer periods, we should expect that longer sites would be more predictable. On top of this, site

principal investigators are likely to become more familiar with problems with their sites, equipment, or methods, and more20

likely to be able to find solutions to those problems over time, and so we should expect that data quality should improve in

longer site datasets. We examined the number of years in the dataset as a predictor for uniqueness.

Gap-filling ratio Some bad data is likely to make it through quality assurance procedures, and such bad data would make

prediction more difficult. It is not clear how one would tell such data in most cases, unless patterns are obvious. We visually

inspected the time series plots produced by FluxnetLSM for each relevant variable, for each site, and saw no obvious problems25

within the data periods marked as good QC. However, some proxy for data quality may be possible, and in particular sites

with more high quality data may indicate better instrumentation or procedures, and less likelihood of having bad data marked

as high quality. We compared sites by the proportion of data marked as good QC to total data, averaged over all variables,

separately for meteorological and flux variables.

We note that some determinants of predictability could not be calculated for some sites. For example, a number of sites have30

no non-gap-filled data for precipitation, and so mean annual precipitation can not be calculated, and neither can dependent

determinants, such as aridity index. In such cases, the sites are omitted from individual analyses.
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3 Results

3.1 Viability of the “predictability” metric

First, we show how the uniqueness and mean performance metrics vary across all models and sites for RMSE, Corr and

Overlap. Figure 2 shows each of the 3 metric pairs (rows) for each of the three fluxes (columns), and how those metrics vary

with mean annual temperature in the CRU TS4.01 dataset. Here the uniqueness and mean performance values are similar to5

those explained in Figure 1, but use more complex models in addition to S_lin (listed in Table 1). Note that uniqueness values

less than zero indicate that the local model is not performing better than the global model, as noted above.

– Row 1 shows the RMSE uniqueness of each site, with more unique sites having higher values.

– Row 2 shows the mean of the RMSE of the global and local simulations for each site. For this metric, one might expect

that sites that are more difficult to predict would have higher values, but note that sites with more available energy will10

generally tend to have larger fluxes and so higher RMSE values, regardless of uniqueness.

– Row 3 shows correlation uniqueness. Like RMSE uniqueness, higher values indicate lower site predictability. Note that

there are a large number of zero values for this metric, because for instantaneous linear regression models, correlation

is always identical (or inverted) between global and local models, since they are using the same input data, and so

uniqueness is always 0.15

– Row 4 shows the mean correlation with observed values for local and global simulations - sites with a low correlation are

more difficult to predict (at least by these models). Note that there are a few simulations with 0 mean correlation – these

are cases where linear regressions had global and local gradients with opposite sign, resulting in an exactly opposite

correlation. In those cases, the zero does not indicate that the global and local simulations had low correlation.

– Row 5 shows the Overlap uniqueness. Higher values indicate sites for which the local Overlap was better than the global20

Overlap, and negative values indicate the global model performed better in terms of Overlap.

– Row 6 shows the mean model-obs Overlap values of global and local models, and lower values indicate a site that is

harder to model in terms of Overlap (Overlap=1 indicates that the model’s flux distribution is identical to the observed

distribution).

All plots have a fitted generalised additive model (GAM) line, added to help indicate trends in the site means. It is estimated25

using the pyGAM package (Servén, 2018), using 8 splines, and plotted with a 95% confidence interval.

In Figure 2, we see that there are some patterns in the predictability metrics, which might indicate that mean annual temper-

ature is a driver of predictability, but in general these patterns are not strong. For instance, for RMSE uniqueness (first row),

we see a slight increase in uniqueness (or lack of predictability) in sites that are cooler (QUANTIFY?), as well as sites that

have a mean annual temperature around 20°C, for both NEE and Qle. That pattern is less distinct in Qh. There is a stronger30

trend in RMSE mean (second row) for Qle, but this is likely largely due to the fact that warmer sites naturally tend to have
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Figure 2. Predictability metrics for mean annual temperature, for all models. The three columns represent the three fluxes, NEE, Qh, and

Qle. The six rows show RMSE uniqueness, RMSE mean, correlation uniqueness, correlation mean, Overlap uniqueness, and Overlap mean.

Grey points are individual simulation values, blue points are site means across all empirical models. Note that the mean RMSE for NEE is an

order of magnitude smaller than for Qh and Qle, and so we have used a different scale for NEE in the second row (Qh and Qle scale indicated

on the right). 13
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larger heat fluxes. It seems surprising that Qh does not exhibit the same pattern, since it is more directly related to temperature.

Correlation uniqueness (third row) and mean (4th row) shows a similar pattern to RMSE uniqueness for NEE and Qle, where

cooler sites and sites around 20°C tend to be harder to predict well. Patterns in Overlap uniqueness (5th row) and mean (6th

row) are less clear, but there may be a slight indication of higher uniqueness around 20°C for NEE, and a possible a lower

distribution predictability at higher average temperatures. Note that the negative Overlap uniqueness values are largely due to5

the fact that regression models do not perform particularly well on extreme values (as indicated in Best et al., 2015).

3.2 Determinants of predictability

Since there are a large number of hypotheses to test, only a selection of the most interesting results is shown here. We have

also opted to show only the RMSE uniqueness in many plots, since its interpretation is the most straightforward, given the

regression based nature of the empirical models, and since in many cases it correlates with some of the other metrics. Methods10

and plots for other hypotheses tested are included in the Supplementary Material, along with further details of some of the

results presented below (including plots of the other 4 predictability metrics). As some determinants are not available for some

sites, the number of site and model combinations in each analysis is noted in each figure title. The figures below use the same

methodology as the Figure 2.

3.2.1 Predictability as a function of energy and water15

The three fluxes we investigate are clearly dependent on the availability of both water and energy. The availability of water

is largely defined by precipitation, and temperature provides a proxy for the amount of energy available. We show the RMSE

uniqueness for mean precipitation in Figure 3. There appears to be some trend associated with precipitation indicating that the

driest sites are more unique for all fluxes, particularly for NEE and Qle.

In Figure 4, the RMSE uniqueness and RMSE mean are plotted as a scatter plot of mean annual temperature and mean20

annual precipitation. There appears to be some interaction between the two variables, with drier sites with a mean temperature

around 20°C showing the highest uniqueness. As in Figure 2, there is also some indication of higher RMSE mean for warmer

sites in all fluxes.

Figure 5 shows RMSE uniqueness for aridity index. The pattern shown for each flux, and particularly NEE and Qle, is quite

similar to that for mean precipitation in Figure 3, with more very arid sites being less predictable.25

Figure 6 shows how the sites sit in the Budyko framework. The first row shows the sites on a standard Budyko diagram, with

actual evaporation divided by mean annual precipitation on the y-axis, and potential evaporation divided mean annual precip-

itation on the x-axis. Theoretically, a site should fall just below the solid blue line, but location can be affected by available

water (e.g. inflow, or precipitation in the period before the measurement period), or the method of estimating potential evapo-

ration. There do not appear to be strong patterns in the potential evapotranspiration uniqueness (see Supplementary material)30

and actual evapotranspiration appears to have some weak patterns (greater NEE uniqueness at sites with lower evaporation, and

the opposite for Qh and Qle, see Supplementary Material), although these are not particularly clear in the Budyko diagrams

in the first row. There does not appear to be any pattern in predictability for NEE or Qle as a function of deviance from the
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Figure 3. RMSE uniqueness for mean annual precipitation.

0

500

1000

1500

2000

2500

3000

C
R

U
 a

nn
ua

l m
ea

n 
pr

ec
ip

 (m
m

/y
)

NEE (155 sites) Qh (155 sites) Qle (155 sites)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

SE
 U

ni
qu

en
es

s

20 10 0 10 20 30
CRU annual mean temp. (°C)

0

500

1000

1500

2000

2500

3000

C
R

U
 a

nn
ua

l m
ea

n 
pr

ec
ip

 (m
m

/y
)

20 10 0 10 20 30
CRU annual mean temp. (°C)

20 10 0 10 20 30
CRU annual mean temp. (°C)

20

40

60

80

100

120

140

R
M

SE
 m

ea
n

Figure 4. Predictability metrics for mean annual temperature vs mean annual precipitation. The top row is RMSE uniqueness (darker colours

indicate a more unique, less predictable site), and the bottom row is RMSE mean performance (darker colours indicate higher over-all

RMSE). The grey underlying hexbin plot indicates the global distribution of mean precipitation and precipitation from the CRU dataset for

all grid cells over land, to give an indication of the representativity of these sites.
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Figure 5. RMSE uniqueness for Aridity Index. Two sites with an Aridity Index greater than 3 are excluded for readability, and 32 sites failed

the Aridity Index calculation.

Budyko curve (shown in the second row in Figure 6), however there does seem to be some trend toward higher uniqueness for

Qh for sites above the Budyko curve (positive deviance). Note that one site (AU-Lox) is excluded from this plot, as its values

are too large (AET/MAR of 11.77, and a PET/MAR of 10.72). Its RMSE uniqueness values are 0.352 for NEE, 0.476 for Qh,

and 0.438 for Qle. This site and the other sites with AET/MAR values over 2 are all Wetland sites, and as such are likely to

have surface water available from upstream run-off in quantities far exceeding that due to precipitation alone.5

3.2.2 Predictability as a function of site variability

Variability of forcing variables is a major component in the predictability of fluxes. In general, we might expect higher variabil-

ity to lead to lower predictability. Here we examine predictability at various time scales. Figure 7 shows the RMSE uniqueness

over the interannual variability of temperature, and Figure 8 shows the same for precipitation, using the CRU TS4.01 data.

There does not appear to be a strong trend in increased predictability with higher interannual temperature variability Figure10

7. However, there does appear to be a clear trend toward higher uniqueness at sites with stronger interannual variability in

precipitation for NEE and for Qle (Figure 8).

Other modes of variability descending in scale include intra-annual variability, such as annual range, or variance of monthly

values (seasonality); means of particular seasons; and diurnal ranges, as well as mixed-scale measurements, such as isothermal-

ity (ratio of diurnal range to annual range of temperature). Measures of each of these for both temperature and precipitation are15

included in the BioClim data, and plots of uniqueness as a function of each variable are included in the Supplementary Material.

We do not include them here because, for the majority of cases, there appears to be no clear patterns of note. The exception

includes some increase in RMSE uniqueness in NEE, and perhaps also for Qle, for sites with a higher diurnal temperature

range (Figure 9).
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CRU TS 4.01. In the first row, colour indicates RMSE uniqueness, averaged across models, where darker colours are more unique. The solid

line represents the theoretical energy and water limitations, and the dotted line represents the Budyko curve (Gerrits et al., 2009). The second

row shows sites’ deviance from the Budyko curve, normalised by the Budyko expectation for the site (sites > 0 lie above the curve in the first

row).

0.002 0.004 0.006
CRU interannual temp. CoV (K) (155 sites)

0.2

0.0

0.2

0.4

0.6

0.8

rm
se

 u
ni

qu
en

es
s

pseudo-R2: 0.035

NEE (1014 simulations)

0.002 0.004 0.006
CRU interannual temp. CoV (K) (155 sites)

pseudo-R2: 0.034

Qh (1129 simulations)

0.002 0.004 0.006
CRU interannual temp. CoV (K) (155 sites)

pseudo-R2: 0.084

Qle (1120 simulations)

Figure 7. RMSE predictability by temperature interannual variability, calculated from the coefficient of variation in the CRU TS4.01 annual

means.
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Figure 8. RMSE predictability by precipitation interannual variability, calculated from the coefficient of variation in the CRU TS4.01 annual
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Figure 9. RMSE uniqueness for temperature diurnal range.

3.2.3 Predictability as a function of vegetation characteristics

Vegetation type is a defining characteristic of different sites, and we would expect different vegetation types to behave differ-

ently, reflecting both their adaptations to their environment as well as their response to the met forcing. In particular, we would

expect the behaviour of some vegetation types to be more predictable than others. Figure 10 shows the RMSE uniqueness

relative to grouped vegetation type (see methods). While there are some differences in uniqueness by vegetation type, few are5

significant. The main significant differences in RMSE uniqueness (Tukey’s honest significant difference test of means across

models per site, p < 0.05) are:

– For NEE, Shrubland sites tend to be more unique than all other vegetation types.

– For Qh, Wetlands are more unique than Forest types, Shrubland and Savannah, and Grass also tends to be more unique

than Evergreen and Deciduous Forests and Savannah.10
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Figure 10. RMSE uniqueness for vegetation type (grouped, see Methods).

– For Qle, Wetlands and Grasses tend to be more unique than Evergreen Forests.

However, there is still substantial overlap between even these groups, and the differences between the vegetation type groups

are even less distinct when compared over the other five predictability metrics (see Supplementary Material).

3.2.4 Predictability as a function of geography

Globally, FLUXNET sites are not evenly distributed, both in space, and in climate regime. Figure 11 shows RMSE uniqueness5

for NEE as mapped globally, and averaged across models for each site. Given that the models are trained on all sites globally,

and those sites are not evenly distributed around the globe (Figure 11) we might expect that sites less well represented (more

remote) would be more unique. In Figure 11, there is a hint that more remote sites might be more unique for NEE. Such a

pattern is not obvious in the maps for Qh or Qle (see Supplementary Material). To confirm this, we plotted uniqueness by

remoteness (defined as the average distance from a site to all other sites) in Figure 12. There is a indeed a weak trend towards10

uniqueness at more remote sites for NEE, but not for Qh and Qle. There are no strong patterns evident in remoteness for any

variable for any of the other predictability metrics (see Supplementary Material).

3.2.5 Predictability as a function of data quality

There are a number of ways that data quality might affect uniqueness. We investigated the energy closure problem in FLUXNET

by comparing predictability as a function of the actual energy closure imbalance, as well as the energy closure imbalance15

normalised by Rnet. While the energy closure problem in FLUXNET is perhaps one of the most obvious candidates for a

determinant of a site’s predictability, there does not appear to be a strong pattern in the data for RMSE uniqueness in either

plot (nor for any of the other predictability metrics, see the Supplementary Material).
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Figure 11. Map of NEE predictability - RMSE uniqueness, averaged across models, darker colours are more unique for NEE. In this map,

sites are moved to avoid overlap, and a black line joins the site do to its’ original location. This way the map gives a better idea of density of

FLUXNET in different regions.
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Figure 13. RMSE uniqueness for number of years in dataset.

The number of years in the dataset is another obvious candidate determinant of predictability. There does seem to be a weak

trend towards shorter sites being more unique, particularly for NEE and Qle (Figure 13). This may be due to longer sites biasing

the global training data such that the global model is more like their local models (and hence they appear less unique). This

weak trend is somewhat visible in the other predictability metrics (see Supplementary Material, for example in mean Corr, and

mean Overlap), but in each case is not strong enough to be significant.5

Although the number of years gives a broad scale view of the amount of data in a dataset, it does not tell the whole story.

For example, one 2-year site might contain almost a whole 2 years worth of good QC data, while another might contain less

than a single year. As such, we also examined the ratio of good QC data to bad QC data at each site. Figure 14 shows the good

QC ratio for the flux data combined . Like many of the other potential determinants of predictability, we did not find any clear

patterns.10
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Figure 14. RMSE uniqueness for good QC ratio in flux forcings.

3.3 Predictability summary

While we have shown that predictability is affected to some degree by various factors (dryness and some vegetation types in

particular, it is useful to be able to have an overview of the entire dataset. Figure 15 shows the mean RMSE uniqueness for each

of the three fluxes, sorted alphabetically by FLUXNET site code. Here we see that uniqueness is somewhat consistent across

variables at each site - Pearson correlation coefficients between variables are: NEE-Qh: 0.113, NEE-Qle: 0.536, Qh-Qle: 0.456.5

There are interesting differences within clusters of FLUXNET sites, for example the US Metolius sites (US-Me1, US-Me2,

US-Me6) are similarly unique for Qh and Qle, but US-Me1 is substantially more unique for NEE, and this site was measured

for two years after a fire that killed all trees at the site (Law, 2016). This gives some indication that our uniqueness metric does

indeed have bio-physical meaning.

4 Discussion10

In this paper we applied a suite of empirical models to the 155 flux tower sites with half-hourly data included in Tier 1 release

of FLUXNET. Our aims were to explore how predictability varied across sites, and then to use this insight into predictability

to develop a more systematic approach to guide site selection in model evaluation exercises.

4.1 Site predictability

Our multi-site analysis points to marked variability in predictability. For example, it appears that sites in warmer, drier climates15

tend to be more unique for all fluxes (Figure 3, Figure 4 and Figure 5), and sites with a large diurnal temperature range tend

to be more unique, particularly for NEE, and to a lesser extent for Qle (Figure 9). On the other hand, potential determinants

that we expected to have quite strong effects on predictability did not appear to do so, for instance mean temperature (Figure

2), dataset length (Figure 13), and major vegetation types (Figure 10). There are several reasons why this might have been the

case.20
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Figure 15. RMSE uniqueness mean across models for each flux at each site, in alphabetical order. Darker colours indicate mode unique sites

for each flux.

First, the assumption that vegetation type is a major driver of flux behaviour may be wrong. It is perhaps more likely that

the widely used approach of analysing FLUXNET sites grouped by a small number of discrete plant functional types is too

simplistic, as opposed to exploring differences at a species level, or relating differences to a spectrum of plant traits, plant life

spans and metabolism (Kattge et al., 2011; Reich et al., 1997; Wright et al., 2004). Despite widely acknowledged issues with

this PFT approach (Alton, 2011; Pavlick et al., 2013; Van Bodegom et al., 2012), this analysis framework is still used, partly5

because this is the relevant interpretation metric that LSMs use, but also because the necessary information to dig deeper into

site differences along these lines is still lacking. Whilst datasets do exist - for example TRY (Kattge et al., 2011), GLOPNET

(Wright et al., 2004), LEDA (Kleyer et al., 2008), and ECOFLORA (Fitter and Peat, 1994) - often these are not freely available

and the existing ancillary information relating to vegetation available via FLUXNET is minimal, which impedes analyses

in this direction. This point was eloquently demonstrated by Konings and Gentine (2016), who used data from the AMSR-E10

satellite to characterise global variations in isohydricity (the degree to which plants regulate their stomata as leaf water potential
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declines). When they categorised their analysis on a PFT level, differences between sites and species were no longer distinct.

This remains an avenue ripe for future analysis.

Second, our predictability metrics (RMSE, Corr, Overlap uniqueness and mean) may not be appropriate. There may be

systematic biases that inhibit our estimate of predictability due to over-representation of particular biomes, or because mea-

surement periods were not representative. However, the analysis in Figure 12 indicates that there is not a strong trend towards5

more remote sites being harder to predict, providing some support to our methodology. Our results did indicate a weak trend

toward higher uniqueness in sites with shorter measurement periods (see Figure 13), however, a single year of flux data repre-

sents a substantial amount of useful data. Short datasets may also be particularly useful if they happen to include rare events

that are not well represented in other datasets, such as regional droughts or heatwaves. We nevertheless openly invite construc-

tive arguments against our predictability metric proposal, identification of flaws in the process, or alternative definitions of site10

predictability or uniqueness.

Should we expect stronger patterns of predictability? In our view, there are strong arguments to support the utility of the

FLUXNET data for analyses of predictability. We know that meteorological data measured at flux tower sites does contain

a great deal of information about the measured fluxes (Best et al., 2015; Haughton et al., 2018). Indeed the information

contained in the meteorological data about fluxes was very much consistent across sites and this was key to the success of15

those experiments. So we know that the empirical models used here, which follow a very similar methodology, are capturing

the relationships between the meteorological forcing and the predicted fluxes relatively well.

One way we might improve upon this analysis is by focusing on the differences in performance or uniqueness between

models with similar structure, but with extra forcing variables. This would tell us something about the predictability contingent

on that variable. For instance, if a model such as STH_km243 (a 243-centre cluster and regression on shortwave down, air20

temperature, and relative humidity, see Table 1) performs substantially better at a class of sites than an ST_km243 model (the

same, but missing relative humidity), then we can say that predictability at those sites may be contingent on information in the

humidity data. This analysis is substantially more complex, and so we have left it for future work. The code used to run these

models is available at https://github.com/naught101/empirical_lsm, version 1.1 was used for this paper.

4.2 Model evaluation25

Our second major aim was to develop a more systematic approach for LSM evaluation underpinned by differences in site

predictability. Recent work has already illustrated the benefits of defining benchmark levels of performance for a given metric,

at a given site (Best et al., 2015; Haughton et al., 2016). The empirical analysis of site predictability we presented goes one

step further, effectively quantifying the additional benefit to model performance that site-specific information can provide in

the form of the locally trained empirical models.30

Land surface modellers will usually rationalise why a particular module was selected to represent a physical process, or why

a specific atmospheric model was used. Given the new information presented in this paper, we suggest that a thorough rationale

for why specific FLUXNET sites were used should be explicit in future publications. Importantly, we note that we could not

provide evidence that would support site choices based on PFT (Figure 10), data length (Figure 13), quality control (Figure 14)
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and so these really do not seem legitimate ways to rationalise choice of sites. We recommend that the predictability of the site

is one element for choosing sites, but the process of selecting sites should be more rigorous and reported whether or not this

recommendation is followed.

How might this site-specific information be used? Perhaps most obvious would be the clustering of sites, based on their

predictability, for use in model evaluation and benchmarking exercises. In Figure 15, we provided some initial guidance to the5

LSM evaluation community. Here, sites shown in darker colours are sites that exhibit unusual meteorological-flux relationships

for a given flux. These are the sites that are likely to present more of a challenge for process-based LSMs to simulate. On the

flip side, lighter coloured sites follow commonly observed patterns of behaviour, so good LSM performance at these should

be less surprising, and is perhaps less of an achievement. What is important is that modellers should know if the sites they

are evaluating their models against are relatively predictable, or unpredictable. Our results, and Figure 15 in particular, gives10

modellers a tool that can form the basis of a strategy to choose sites, a defence if they choose unpredictable sites and do poorly,

and a challenge if they choose more predictable sites and do well. We suspect that the best general strategy for model evaluation

would be to pick a set of sites that includes both very predictable sites, as well as very unpredictable sites, with a distribution

informed by the determinants of predictability presented above.

Of particular note in Figure 15, but of interest beyond LSM evaluation, is that predictability can be markedly different for15

different surface fluxes at the same site. For example, we see a number of sites with high NEE and Qle uniqueness, and low

Qh uniqueness (e.g. AU-TTE, AU-Ync, ES-Ln2, US-Whs, US-Wkg), and other sites with high Qh uniqueness (e.g. CH-Cha,

IT-MBo, IT-Tor, US-Myb). We also see some neighbouring sites with extremely different predictability responses for different

fluxes (e.g. DK-ZaF, a wetland site, has very high NEE uniqueness, while the neighbouring DK-ZaH, a heath [grasslands] site,

has high Qh and Qle uniqueness). This is evident in other figures where there uniqueness patterns are not shared between fluxes20

(for example the differences between Qh and the other fluxes in Figures 6 and 9). This provides new justification for different

site selection strategies depending on the processes being evaluated.

Our analysis may understandably lead to modelling groups gravitating toward evaluating their models only against a specific

sub-sets of FLUXNET sites. We do not think that this is a desirable outcome, and thus have not provided a suggestion of

specific sites to use. Indeed care must be taken when evaluating models on small groups of FLUXNET sites due to the greater25

need to consider the various intricacies of site-specific behaviour. When models are evaluated against a large number of sites,

an argument can be advanced that unique site behaviour may average out in the noise. If analysis approaches like ours were

to lead to small groups of sites being used to evaluate models, greater care would be needed to capture an adequate diversity

of site characteristics. For example, it may be that sites we determine to be unique are simply those that have undergone a

disturbance event (e.g. clear felling, fire, wind storms, etc.), or are subject to management (e.g. cropping, irrigation). With30

improved information about site characteristics (e.g. time since last disturbance), these issues could be avoided. A major

advance that would be useful to the LSM community would be the systematic publishing of metadata characterising each site

in the FLUXNET data.

Finally, the logical next extension of our work is to evaluate a suite of LSMs at the sites deemed to be most and least pre-

dictable, in order to understand the extent to which site predictability translates into model skill. Such an analysis will of course35
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need careful consideration of the kinds of site eccentricities noted above, noting that information about these eccentricities is

not as commonly available as flux and meteorological data. Nevertheless, work of this kind will ultimately help refine how this

predictability metric is best utilised in model evaluation strategies.

5 Conclusions

In this study, we applied a novel methodology to characterise the predictability of surface fluxes at sites within the FLUXNET20155

dataset. We had two key aims: first, we sought to explain why predictability varied across the 155 FLUXNET sites, with the

expectation that we would find patterns in predictability along gradients such as aridity, vegetation type, or in relation to various

bioclimatic metrics, both annually and seasonally. Whilst we did show that the 155 FLUXNET sites vary strongly in their pre-

dictability, we did not find especially strong patterns in predictability, with the possible exception of aridity. We acknowledge

that we might have missed some relevant determinants of predictability, or some transformation of, or interaction between the10

determinants that we did have available. If we could incorporate these, a clear pattern of predictability might emerge.

Our second aim was to propose a more systematic approach to site selection for model evaluation, underpinned by differences

in site predictability. While we found fewer patterns in predictability that we expected, we nevertheless now have a basis on

which to define a priori expectations of model performance. We suggest that careful choice of FLUXNET sites based on

predictability may avoid modellers incorrectly judging their models negatively (via choice of very unpredictable sites) or15

positively (via choice of very predictable sites). While further work based on this predictability metric is required before a

complete rationale for site selection is obvious, we now have a basis on which to develop such a strategy. As a first step, we

strongly encourage modelling groups to explain why they choose specific sites for evaluation because, thanks to the FLUXNET

community, a lack of availability of data is no longer a reason for site selection.
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